Econ4130 11H

Exercises for seminar week 42

Rice, chapter 4: No. **75, 83** (use the mgf), **85** (see hint), **100** (read section 4.6 in Rice and (A4-5) in appendix 1 in Lecture notes to Rice chapter 5".)

Rice, chapter 5: No. 4, 12

Hint for ex 4:85: Remember the sum of a geometric series:

 $1 + a + a^{2} + a^{3} + \dots = \sum_{i=0}^{\infty} a^{i} = \frac{1}{1-a}$ for all numbers, *a*, such that |a| < 1. A common factor in such a series can be taken outside the sum as for finite sums: $\sum_{i=0}^{\infty} ca^{i} = c \sum_{i=0}^{\infty} a^{i}$

Hint for ex 5:4: Remember from the basic course, Stat I, that if X is poisson distributed with parameter, m, $X \sim \text{pois}(m)$, we know that E(X) = var(X) = m, and if $m \ge 10$ (about), then X is approximately normally distributed, $X \sim N(E(X), \text{var}(X)) = N(m, m)$. Use this.

Hint for ex 5:12: Use the central limit theorem (CLT) (Rice Theorem B on page 184), which says that if $X_1, X_2, ...$ are *iid* random variables with $E(X_i) = 0$ and $var(X_i) = \sigma^2$, then the sum, $S_n = \sum_{i=1}^n X_i$, is approximately $N(0, n\sigma^2)$ distributed for large *n*. This the same as saying that $\frac{S_n}{\sigma\sqrt{n}} \sim N(0,1)$, or $P\left(\frac{S_n}{\sigma\sqrt{n}} \le x\right) \approx \Phi(x)$, where $\Phi(x)$ is the cdf in N(0,1).