Econ4130 11H

Exercises for seminar week 42

Rice, chapter 4: No. **75, 83** (use the mgf), **85** (see hint), **100** (read section 4.6 in Rice and (A4-5) in appendix 1 in Lecture notes to Rice chapter 5".)

Rice, chapter 5: No. **4**, **12**

Hint for ex 4:85: Remember the sum of a geometric series:

2 a^3 0 $1 + a + a^2 + a^3 + \cdots = \sum_{i=1}^{\infty} a^i = \frac{1}{1 - a^i}$ 1 *i i* $a + a^{2} + a^{3} + \cdots = \sum a$ *a* ∞ $+a+a^2+a^3+\cdots = \sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$ for all numbers, *a*, such that $|a| < 1$. A common factor in such a series can be taken outside the sum as for finite sums: 0 $i=0$ $ca^i = c \sum a^i$ *i i* ∞ ∞ $\sum_{i=0} ca^i = c \sum_{i=0}$

Hint for ex 5:4: Remember from the basic course, Stat I, that if *X* is poisson distributed with parameter, *m*, $X \sim \text{pois}(m)$, we know that $E(X) = \text{var}(X) = m$, and if $m \ge 10$ (about), then *X* is approximately normally distributed, $X \sim N(E(X), \text{var}(X)) = N(m, m)$. Use this.

Hint for ex 5:12: Use the central limit theorem (CLT) (Rice Theorem B on page 184), which says that if X_1, X_2, \ldots are *iid* random variables with $E(X_i) = 0$ and $var(X_i) = \sigma^2$, then the sum, 1 *n* $n = \sum_i^{i}$ *i* $S_n = \sum X$ $=\sum_{i=1} X_i$, is approximately $N(0, n\sigma^2)$ distributed for large *n*. This the same as saying that $\frac{S_n}{\sqrt{}} \to N(0,1)$ ^σ *n* , or $P\left(\frac{S_n}{\sqrt{P}} \leq x \right) \approx \Phi(x)$ $\left(\frac{S_n}{\sigma\sqrt{n}} \leq x\right) \approx \Phi(x)$, where $\Phi(x)$ is the cdf in $N(0,1)$.